Ab initio **Mechanistic Comparison of Addition of Hydrogen Chloride to Silaethene and Ethene**

Shigeru Nagase" and Takako Kudo

Department of Chemistry, Faculty of Education, Yokohama National University, Yokohama 240, Japan

The addition of HCI to silaethene proceeds, with a small overall barrier, *via* the formation of a complex and a two-centred transition state; this differs significantly from the analogous reaction of ethene.

important intermediates is available. In a recent communica- and compare these with the analogous reaction of ethene.

Although in recent years much progress has been made in the tion, Davidson *et al.²* reported kinetic parameters for the gas-
generation and characterization of silicon-carbon doubly phase addition of hydrogen halides an bonded intermediates,¹ very little quantitative information on dimethylsilaethene.³ We now report *ab initio* mechanistic the kinetic and mechanistic aspects of the reaction of these calculations of the addition of hydrogen chloride to silaethene,

Figure 1. 3-21G SCF optimised geometries of a complex (upper) and a transition state (lower) for the addition of hydrogen chloride to silate
hence, in Ångstroms and degrees. The total energies are
calculated to be -785 the displacement vector of the reaction co-ordinate (the normal co-ordinate corresponding to the imaginary vibration) at the transition state.

The stationary points on the potential energy surface of the title reaction were carefully determined by the 3-21G SCF method⁴ and the analytic energy gradient technique⁵ and were then identified as the equilibrium or the transition state (saddle point) by calculating normal vibrational frequencies. Upon going from the reactants, $HCl + H_2Si = CH_2$, to the product, $H₃Si-CH₂Cl$, two stationary points were calculated which were found to be an intermediate complex and a transition state. **As** Figure 1 shows, a complex forms in a fairly early stage of the reaction and is held together by a stabilization energy of 15.9 kJ mol-I. **A** transition state, which resembles the complex in structure, was calculated to be 30.8 kJ mol⁻¹ more unstable than the complex.

Comparing this with the reaction of HCl with ethene, the following similarities and differences are worth mentioning. A Mulliken population analysis† reveals that HCl adds to both

Figure 2. 3-21G **SCF** optimised geometry of a transition state for the addition of hydrogen chloride to ethene, in Angstroms and degrees. The calculated total energy is - 535.41294 Hartree. The arrows indicate the displacement vector of the reaction co- ordinate.

silaethene and ethene in an electrophilic way. The reaction of silaethene is calculated to be 340.5 kJ mol⁻¹ exothermic while the reaction of ethene is 98.3 kJ mol^{-1} exothermic. Reflecting this large difference in exothermicity, the former reaction gives rise to a considerably looser transition state than does the latter reaction. **A** most interesting finding is that the reaction of silaethene involves a two-centre-like transition state, while, as noted in the previous STO-3G⁶ and MNDO⁷ calculations, the reaction of ethene proceeds *via* a cyclic four-centre-like transition state (Figure 2).

As might be expected from the characteristic frontier orbitals of molecules containing doubly bonded group 4B metals,⁸ an overall barrier of 14.8 kJ mol⁻¹ calculated for the reaction of silaethene is far smaller than the barrier of 151.0 **kJ** mol^{-1} calculated for the reaction of ethene, indicating the very high reactivity of a silicon-carbon double bond. The barrier height calculated for the reaction of silaethene seems to be in reasonable agreement with a 10 \pm 7 kJ mol⁻¹ activation energy observed recently by Davidson *et a1.2* for the reaction of I, **1** dimethylsilaethene with HCl.

All computations were carried out at the Computer Center of the Institute for Molecular Science, using the computer centre library program (IMSPAK).

Received, 4th January 1983; Conr. 006

References

- **¹**H. F. Schaefer, *Ace. Chem. Res.,* 1982, **15,** 283.
- 2 I. M. T. Davidson, C. E. Dean, and F. T. Lawrence, *J. Chem. Soc.., Chem. Commun.,* 1981, 52.
- 3 For the properties of 1,l-dimethylsilaethene, see M. Hanamura, **S.** Nagase, and K. Morokuma, *Tetrahedron Lett.,* 1981, **22,** 1813, and ref. 1.
- 4 M. **S.** Gordon, J. **S.** Binkley, J. **A.** Pople, W. **J.** Pietro, and W. J. Hehre, *J. Am. Chem. Soc.,* 1982, **104,** 2797.
- 5 **A.** Komornicki, K. Ishida, K. Morokuma, R. Ditchfield, and M. Conrad, *Chem. Phys. Lerr.,* 1977, **45,** 595.
- **6** P. C. Hiberty, *J. Am. Chem. Soc.,* 1975, **97,** 5975.
- 7 H. **S.** Rzepa, *J. Chem. Soc., Chem. Commun.,* 1981, 939.
- 8 T. Kudo and **S.** Nagase, *Chem. Phys. Lert.,* 1981, **84,** 375; **S.** Nagase and T. Kudo, *J. Mol. Struct.* (THEOCHEM), in the press.

t Since care may need to be exercised for the absolute values of charge densities from Mulliken population analyses, the interpretation is meant to be rather qualitative.